Solutions to Problem Set 2

1. (a) The mass is the integral of the density over the volume. In cylindrical coordinates this is

$$M = \int_0^\infty dR R \int_{-\infty}^\infty dz \int_0^{2\pi} d\phi \frac{\Sigma_0}{h_Z} e^{-|z|/h_Z} e^{-R/h_R}.$$

The angular integral gives a factor of 2π . The integral over z is

$$\int_{infty}^{\infty} dz e^{-|z|/h_Z} = 2 \int_{0}^{\infty} e^{-z/h_Z}$$

since it is symmetric over $\pm z$, so we simply do the positive part, and multiply by two. The positive part is equal to h_Z , so we now have

$$M = 4\pi \Sigma_0 \int_0^\infty dR R e^{-R/h_R}.$$

The R integral has dimensions of lengths squared, the only length is h_R , so it goes as h_R^2 . We've done the resulting dimensionless integral in class: it is simply one, so

$$M = 4\pi \Sigma_0 h_R^2.$$

(b) The mass contained within a spherical radius r is simplified considerably if the disk is very thin. Then, the mass in this volume is simply the integral of the surface density $2\Sigma_0 e^{-R/h_R}$ over the disk out to radius r:

$$M(r) = \int_0^r dR R \int_0^{2\pi} d\phi 2\Sigma_0 e^{-R/h_R}.$$

Define $x \equiv R/h_R$, so that $dR = h_R dx$; then

$$M(r) = 4\pi \Sigma_0 h_R^2 \int_0^{r/h_R} dx x e^{-x}.$$

Integrate by parts with u = x and $dv = dxe^{-x}$. Then,

$$\int_0^{r/h_R} dx x e^{-x} = -x e^{-x} \bigg|_0^{r/h_R} + \int_0^{r/h_R} dx e^{-x}.$$

In the first term, only the upper surface term contributes, and the second integral is $-e^{-x}$, so

$$\int_0^{r/h_R} dx x e^{-x} = -\frac{r}{h_R} e^{-r/h_R} - e^{-x} \bigg|_0^{r/h_R}.$$

Evaluating e^{-x} at the r/h_R and 0 and plugging back in leads to

$$M(r) = 4\pi \Sigma_0 h_R^2 \left[-\frac{r}{h_R} e^{-r/h_R} - e^{-r/h_R} + 1 \right].$$

(c) The velocity due to a point mass is simply GM(r)/r, so

$$v^{2}(r) = 4\pi G \Sigma_{0} \frac{h_{R}^{2}}{r} \left[-\frac{r}{h_{R}} e^{-r/h_{R}} - e^{-r/h_{R}} + 1 \right].$$

2. The three curves in the figure correspond to the exact Bessel function expression; the approximation that the distribution is spherical (from Problem 1) and the even more absurd approximation that all the mass is concentrated at a point in the center of the galaxy.

3. (b) Let's first write down the theoretical prediction for the velocity squared as a function of radius. The contributions from the disk and from the dark matter halo sum in

quadrature, so

$$(v^{\text{theory}}[R, \Sigma_0, \rho_0])^2 = 2\pi G \Sigma_0 \frac{R^2}{h_R} \left[I_0(y) K_0(y) - I_1(y) K_1(y) \right] + 4\pi G \rho_0 r_0^2 \left[1 - \frac{r_0}{R} \arctan(R/r_0) \right]$$

where $y = R/2h_R$ and the second term from dark matter was derived in class. In this case both $h_R(=2.13 \text{ kpc})$ and $r_0(=5 \text{ kpc})$ are fixed, so when comparing with the data we need only minimize the χ^2 with respect to the two parameters Σ_0 and ρ_0 .

To proceed, let's write the above in a more compact form:

$$(v^{\text{theory}}[R])^2 = A(R)\Sigma_0 + B(R)\rho_0$$

where the functions A and B are

$$A(R) \equiv 2\pi G \frac{R^2}{h_R} \left[I_0(y) K_0(y) - I_1(y) K_1(y) \right]$$

and

$$B(R) \equiv 4\pi G r_0^2 \left[1 - \frac{r_0}{R} \arctan(R/r_0) \right].$$

Again, the key point for what follows is that if you give me R I'll tell you A and B. We can now write the χ^2 as

$$\chi^{2}(\rho_{0}, \Sigma_{0}) = \sum_{i=1}^{N} (v_{i}^{2} - A(R_{i})\Sigma_{0} - B(R_{i})\rho_{0})^{2},$$

where i now labels all the N=395 data points; e.g. $R_1=0$ and $v_1=47.9$ km/sec. We want to minimize the χ^2 with respect to the variables Σ_0 and ρ_0 , so we differentiate it first with respect to Σ_0 and then set to zero:

$$\frac{\partial \chi^2}{\partial \Sigma_0} = -2\sum_i \left(v_i^2 - A(R_i)\Sigma_0 - B(R_i)\rho_0 \right) A(R_i) = 0.$$

Then do the ssame thing with respect to ρ_0 :

$$\frac{\partial \chi^2}{\partial \Sigma_0} = -2\sum_i \left(v_i^2 - A(R_i)\Sigma_0 - B(R_i)\rho_0 \right) B(R_i) = 0.$$

We now have two equation for two unknowns. Let's solve them to find the extremum of the χ^2 . The first equation can be rearranged to give

$$\rho_0 = \frac{\sum_i \left(v_i^2 A(R_i) - A(R_i)^2 \Sigma_0 \right)}{\sum_i B(R_i) A(R_i)}$$
 (1)

There are going to be lots of sums over $A(R_i)$ and $B(R_i)$. To simplify the notation, let's define

$$\langle AA \rangle \equiv \sum_{i} A(R_i) A(R_i)$$

and similarly for $\langle AB \rangle$ and $\langle BB \rangle$. Then,

$$\rho_0 = \frac{\langle vvA \rangle - \langle AA \rangle \Sigma_0}{\langle AB \rangle}.$$

Simimlarly the second equation can be rewritten as

$$\Sigma_0 = \frac{\langle vvB \rangle - \langle BB \rangle \rho_0}{\langle AB \rangle}.$$

Into this equation, plug in our expression for ρ_0 to get

$$\Sigma_0 = \frac{\langle vvB \rangle - \langle BB \rangle \left[\frac{\langle vvA \rangle - \langle AA \rangle \Sigma_0}{\langle AB \rangle} \right]}{\langle AB \rangle}$$

Moving the Σ_0 term on the right over to the left leads to

$$\Sigma_0 \left[1 - \langle BB \rangle \langle AA \rangle \langle AB \rangle^2 \right] = \frac{\langle vvB \rangle \langle AB \rangle - \langle BB \rangle \langle vvA \rangle}{\langle AB \rangle^2}$$

and then multiplying both sides by $\langle AB \rangle^2$ and dividing by the ressulting term in square brackets on the left leads to

$$\Sigma_0 = \frac{\langle vvB \rangle \langle AB \rangle - \langle BB \rangle \langle vvA \rangle}{\langle AB \rangle^2 - \langle BB \rangle \langle AA \rangle}$$

an explicit expression for the surface density of the disk in terms of sums over the data and over A and B.

When I do the sums, I get:

$$\langle vvA \rangle \equiv \sum_{i} v_i v_i A(R_i) = 166 \left(\text{km sec}^{-1} \right)^4 M_{\odot}^{-1} \text{kpc}^2$$

and

$$\langle vvB\rangle \equiv \sum_{i} v_i v_i B(R_i) = 3634 \left(\text{km sec}^{-1}\right)^4 M_{\odot}^{-1} \text{kpc}^3$$

for the sums over the velocities. The other sums are

$$\langle AA \rangle = 33.5 \times 10^{-8} \, (\text{km sec}^{-1})^4 \, M_{\odot}^{-2} \, \text{kpc}^4$$

and

$$\langle BB \rangle = 1.42 \times 10^{-4} \, \big({\rm km \ sec^{-1}} \big)^4 \, M_\odot^{-2} {\rm kpc}^6$$

and the cross-term

$$\langle AB \rangle = 5 \times 10^{-6} \, (\text{km sec}^{-1})^4 \, M_{\odot}^{-2} \text{kpc}^5.$$

So plugging in, I get

$$\Sigma_0 = 2.4 \times 10^8 M_{\odot} \text{kpc}^{-2}$$

Plugging back into Eq. 1 gives

$$ho_0 = 1.7 \times 10^7 M_{\odot} \mathrm{kpc}^{-3}$$
 $ho_0 = 1.7 \times 10^7 M_{\odot} \mathrm{kpc}^{-3}$
 $ho_0 = 1.7 \times 10^7 M_{\odot} \mathrm{kpc}^{-3}$

Problem 24.1 Let's do this the GR way. The geodesic equation is

$$\frac{d^2x^i}{dt^2} = -\Gamma^i{}_{jk}\frac{dx^j}{dt}\frac{dx^k}{dt}.$$

In cartesian coordinates the Christoffel symbol is zero, so both x and y satisfy $d^2x^i/dt^2=0$. Now let's consider polar coordinates, in which $x^1=R, x^2=\theta$. It is straightforward to show that

$$\Gamma^{1}_{22} = -R$$
 ; $\Gamma^{2}_{21} = \Gamma^{2}_{12} = \frac{1}{R}$

and all other components vanish. Then,

$$\frac{dx^1}{dt^2} = \ddot{R} = -\Gamma^1{}_{jk} \frac{dx^j}{dt} \frac{dx^k}{dt}.$$

The only non-zero component of Γ^1_{jk} is with j=k=2, so

$$\ddot{R} = -\Gamma^{1}_{22} \left(\dot{\theta} \right)^{2} = R \dot{\theta}^{2}.$$

This is indeed the equation for R. Th equation for θ is

$$\frac{d^2x^2}{dt^2} = \ddot{\theta} = -\Gamma^2{}_{jk}\frac{dx^j}{dt}\frac{dx^k}{dt}.$$

One of the indices must be equal to 1 and the other to 2 for Γ^2_{jk} to be non-zero. Both terms contribute equally leaving

$$\ddot{\theta} = -\frac{2}{R}\dot{R}\dot{\theta}.$$

This can be rewritten as

$$\ddot{\theta} + \frac{2}{R}\dot{R}\dot{\theta} = \frac{1}{R}\frac{d}{dt}\left(R^2\dot{\theta}\right) = 0$$

the correct equation for conservation of angular momentum.